Name: \qquad

Review for Test: Advanced Forces

1) A sled with a weight of 90 N is pulled with a force of 100 N inclined at 40° above the horizontal. The sled moves at a constant velocity.

What is the magnitude of the friction force acting on the sled?
A) $\quad 64 \mathrm{~N}$
B) $\quad 77 \mathrm{~N}$
C) $\quad 90 \mathrm{~N}$
D) 100 N
2) The diagram below shows a large 75 kg medallion suspended from the ceiling by two chains, A and B.

Which of the following represents the tension force in Chain A?
A) 1470 N
B) 368 N
C) 735 N
D) 572 N
3) A 40.0 N force of is applied at an angle of 30° with the horizontal to a 6.0 kg block resting on a surface. The block accelerates at a rate of $3.19 \mathrm{~m} / \mathrm{s}^{2}$.

What is coefficient of friction between the surface and the block?
4) The following situation is being studied.

Adrian and Irwin conducted the investigation shown below. A $10-\mathrm{kg}$ mass was suspended by a string and attached to a $5.0-\mathrm{kg}$ block. The coefficient of kinetic friction between the $5.0-\mathrm{kg}$ mass and the surface is 0.5 .

What was the acceleration of the system shown?
5) On planet Physico, a 3.0 kg mass pulls a 6.0 kg mass as is illustrated below. Friction between the 6.0 kg block and the surface is 6.3 N . The system accelerates at a rate of $1.8 \mathrm{~m} / \mathrm{s}^{2}$.

What is the acceleration due to gravity on planet Physico?
6) Two dynamometers (or spring scales) are used to suspend a 50 kg mass as shown on the diagram below. (Note: a dynamometer is a device that reads the force.)

What is the reading of both dynamometers?
7) A pulley system with 3.0 kg and 2.0 kg masses is used as shown in the diagram below. The total frictional force is 5.0 N .

What is the tension in the string holding the two blocks together?
8) A ramp is set at 15° above the horizontal. A 125 kg box is to be moved down the ramp. A force of 250 N is applied to the box down the incline. The coefficient of friction between the box and the ramp is 0.40 .

What is the acceleration of the box down the ramp?
9) A 50 kg box rests on a frictionless inclined plane. The box is also supported by a spring of constant $250 \mathrm{~N} / \mathrm{m}$.

By how many centimeters is the spring being compressed?
10) Three carts, moving on a frictionless surface, are joined by strings whose masses are negligible. The carts are pull by a force of 35 N .

What is the tension in the string that joins the 3.0 kg mass to the 5.0 kg mass?
11) A 5.0 kg block is pulled using a force set at an angle of 40.0° above the horizontal. A force of friction of 45 N acts on the block. The block accelerates at a rate of $4.0 \mathrm{~m} / \mathrm{s}^{2}$.

What is the magnitude of the force used to pull the block?
12) A 2.00 kg mass is suspended between two stands. The force measured by one spring scale is 15.0 N at 30° to the horizontal.

Which reading below would appear on the second scale?
A) $\quad 17.8 \mathrm{~N}$
B) $\quad 13.4 \mathrm{~N}$
C) $\quad 9.98 \mathrm{~N}$
D) $\quad 4.60 \mathrm{~N}$
13) A 10.0 kg box starts at rest at the top of an incline that is 8.0 m long. The incline is set at 28° and it takes the box 3.0 s to slide down the length of the incline.

What is the coefficient of friction between the box and the incline?
14) Scientists are planning a mission to Io, one of Jupiter's satellites. To make their work easier, the scientists have drawn a graph showing the weight F_{g} of different objects on the surface of Io as a function of their mass.

When the spaceship lands on Io, an $80-\mathrm{kg}$ box containing the equipment required for the mission will be brought to the surface of the satellite by means of a ramp inclined at an angle of 30°. A cable will be used to slide the box down the ramp at a constant speed. Frictional forces are negligible.

What force must be exerted on the cable so that the box can slide down at a constant speed?
15) A force of 10.0 N is applied at an angle of 30° with the horizontal to a 2.0 kg block resting on a surface. The coefficient of friction between the block and the surface is 0.15 .

What is the magnitude of the acceleration of the block?

